intravenously). This result was highly significant (P < 0.005). This reduction in amplitude resulted from depression of the fusimotor system, for the H reflex was unaffected by this dose of thymoxamine. Methylamphetamine (0.2 mg/kg intravenously) increased the tendon jerks by 64% (P < 0.025) without affecting the H reflex. An attempt is being made to block the effect of methylamphetamine with thymoxamine.

We would like to thank the Mental Health Research Fund for an equipment grant.

A. R. and D. G. S. were supported by Fellowships from the Wellcome Trust.

† Present address: Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, U.S.A.

REFERENCES

BIRMINGHAM, A. T., AKUBUE, P. I. & SZOLCSANYI, J. (1967). A quantitative analysis of the antagonism of intravenous noradrenaline by thymoxamine or phentolamine on the blood pressure of a conscious cat. J. Pharm. Pharmac., 19, 137-145.

Dahlström, A. & Fuxe, K. (1965). Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurone systems. *Acta physiol. scand.*, 64, suppl. 247, 5–36.

ELLAWAY, P. H. & PASCOE, J. E. (1968). Noradrenaline as a transmitter in the spinal cord. J. Physiol., Lond., 197, 10P.

MATTHEWS, W. B. (1970). The clinical implications of the H reflex and of other electrically induced reflexes. In *Modern Trend in Neurology*, vol. 5, pp. 241-253, ed. Williams, Denis. London: Butterworths.

The influence of dose on the distribution and elimination of amylobarbitone in healthy subjects

K. BALASUBRAMANIAM, G. E. MAWER* and P. J. SIMONS, Departments of Medicine and Pharmacology, University of Manchester, Manchester 13

The mean plasma amylobarbitone clearance rate C_a (ml/min) in four healthy subjects did not change despite a twofold increase in the administered dose of amylobarbitone. Renal excretion of unchanged amylobarbitone was negligible and the plasma amylobarbitone clearance was mainly attributed to oxidation in the liver.

The elimination rate constant, k_{el} $\binom{1}{\text{time}}$, was recommended as a measure of elimination rate by Riegelman, Loo & Rowland (1968) but the k_{el} for amylobarbitone has proved to be a dose dependent function, not a stable individual characteristic.

Serum amylobarbitone decay curves were determined on three separate occasions in each subject after intravenous doses of 3·23, 4·84 and 6·46 mg/kg. The collection and analysis of samples and the fitting of a two compartment model to the double exponential decay curves have been described earlier (Balasubramaniam, Lucas, Mawer & Simons, 1970).

TABLE 1. Influence of dose on amylobarbitone disposition

Distribution volumes

Flimination

	Distribution	i voiumes	Elilillation					
Dose mg/kg	Initial Distribution V_1 (ml)	Steady State V _{dss} (ml)	Transfer Clearance rate C_t (ml/min)	Clearance rate C_a (ml/min)	Rate Constant k_{i} (1/h)	Decay Half-time (slow-phase) $T_{\frac{1}{2}}$ (h)		
3.23	27,500	68,000	320	37.4	0.082	21.6		
4.84	$^{\pm}_{42,200}$ $^{\pm}_{1,800}$	$\pm 5{,}500$ $76{,}700$ $\pm 8{,}400$	$^{\pm 40}_{480} \ _{\pm 60}$	±2·9 39·8 ±2·5	$^{\pm 0.006}_{0.057}_{\pm 0.003}$	$egin{array}{c} \pm 2.0 \\ 22.0 \\ \pm 0.7 \end{array}$		
6.46	$39,100 \\ \pm 2,000$	$81,600 \\ \pm 6,700$	$^{520}_{\pm 60}$	$^{37\cdot8}_{\pm2\cdot8}$	$0.058 \\ \pm 0.003$	$25.7 \\ \pm 1.0$		

Mean values \pm s.e.m. (n=4).

Mean body weight 66 kg (range 61-70 kg).

The first increment in dose caused a large increase (P<0.001) in the initial distribution volume V_1 and in the rate of transfer C_t (ml/min) between the two compartments (P<0.10). The increase in V_1 has been reproduced without increase in dose in subjects performing physical exercise or sucking glyceryltrinitrate tablets; it is attributed to peripheral vasodilatation. The increase in V_1 caused a reciprocal fall in k_{el} but there was no change in amylobarbitone elimination expressed as the plasma clearance rate C_n .

The second increment in dose caused no significant change in V_1 , C_t , C_a or k_{el} .

REFERENCES

BALASUBRAMANIAM, K., LUCAS, S. B., MAWER, G. E. & SIMONS, P. J. (1970). The kinetics of amylobarbitone metabolism in healthy men and women. *Br. J. Pharmac.*, 39, 564-572.

RIEGELMAN, S., LOO, J. C. J. & ROWLAND, M. (1968). Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit the properties of a single compartment. *J. Pharm. Sci.*, 57, 117-123.

Preliminary observations on the elimination of amylobarbitone by patients with chronic liver disease

G. W. MAWER, N. E. MILLER* and L. A. TURNBERG, Department of Pharmacology, University of Manchester, and Division of Gastroenterology, Royal Infirmary Manchester 13

Amylobarbitone (3.23 mg/kg) was given by intravenous injection over a 3 min period without loss of consciousness to seven patients with chronic liver disease. The serum amylobarbitone decay curves were determined and each was fitted by a two compartment mathematical model. The results were expressed as the half-time $T_{\frac{1}{2}}$ (h) for the slow decay of serum amylobarbitone concentration, the plasma amylobarbitone clearance C_a (ml/min) and the steady state distribution volume V_{dss} (ml). Bromsulph alein retention and other conventional indices of liver function were measured. The purpose and nature of the experiments were fully explained and each patient, gave informed consent.

TABLE 1. Amylobarbitone elimination and bromsulphalein (BSP) retention in patients with chronic liver disease

Description of patient and	Distribution volume (V_{dss})	Plasma clearance rate (C _a)	Half time (slow phase)	(45 min)	Age	Weight
long term drug therapy	(ml)	(ml/min)	(h)	(%)	(years)	(kg)
Juvenile hepatic fibrosis; portacaval anastomosis; frusemide, prednisolone,						
spironolactone	111,000	26	49		22	84
Alcoholic cirrhosis; porta-	-					
caval anastomosis; no drug	s 115,000	28	49	46	56	72
Post-necrotic cirrhosis; no						
drugs	69,000	36	22	48	33	70
Primary biliary cirrhosis;						
no drugs	46,000	33	17	39	43	38
Portal cirrhosis; isoniazid,						
rifampicin, ethambutol	43,000	22	23	47	42	59
Portal cirrhosis; diphen-						
hydramine, methaqualone	83,000	53	20	7	51	76
Active chronic hepatitis:						
lincomycin, tetracycline	53,000	55	12	8	29	50
Healthy controls; mean	61,000	35	21	<5	29	63
No drugs (range)	(36,000-	(23-51)	± 4 (s.d.)	1	(20-43)	(53–85)
$(\hat{n}=10)$	84,000)		, ,			•